Computing with Fisher geodesics and extended exponential families

نویسندگان

  • Frank Critchley
  • Paul Marriott
چکیده

Recent progress using geometry in the design of efficient Markov chain Monte Carlo (MCMC) algorithms have shown the effectiveness of the Fisher Riemannian structure. Furthermore, the theory of the underlying geometry of spaces of statistical models has made an important breakthrough by extending the classical theory on exponential families to their closures, the so-called extended exponential families. This paper looks at the underlying geometry of the Fisher information, in particular its limiting behaviour near boundaries, which illuminates the excellent behaviour of the corresponding geometric MCMC algorithms. Further, the paper shows how Fisher geodesics in extended exponential families smoothly attach the boundaries of extended exponential families to their relative interior. We conjecture that this behaviour could be exploited for trans-dimensional MCMC algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Limiting Behaviour of the Fundamental Geodesics of Information Geometry

The Information Geometry of extended exponential families has received much recent attention in a variety of important applications, notably categorical data analysis, graphical modelling and, more specifically, log-linear modelling. The essential geometry here comes from the closure of an exponential family in a high-dimensional simplex. In parallel, there has been a great deal of interest in ...

متن کامل

Maximum likelihood eigenfunctions of the Fokker Planck equation and Hellinger projection

We apply the L2 based Fisher-Rao vector-field projection by Brigo, Hanzon and LeGland (1999) to finite dimensional approximations of the Fokker Planck equation on exponential families. We show that if the sufficient statistics are chosen among the diffusion eigenfunctions the finite dimensional projection or the equivalent assumed density approximation provide the exact maximum likelihood densi...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Stochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components

In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...

متن کامل

Inferences for Extended Generalized Exponential Distribution based on Order Statistics

‎Recently‎, ‎a new distribution‎, ‎named as extended generalized exponential distribution‎, ‎has been introduced by Kundu and Gupta (2011). ‎In this paper‎, ‎we consider the extended generalized exponential distribution with known shape parameters α and β. ‎At first‎, ‎the exact expressions for marginal and product moments of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016